Feature Subset Selection and Ranking for Data Dimensionality Reduction
نویسندگان
چکیده
منابع مشابه
Variable Subset Selection for Brain-Computer Interface - PCA-based Dimensionality Reduction and Feature Selection
A new formulation of principal component analysis (PCA) that considers group structure in the data is proposed as a Variable Subset Selection (VSS) method. Optimization of electrode channels is a key problem in brain-computer interfaces (BCI). BCI experiments generate large feature spaces compared to the sample size due to time limitations in EEG sessions. It is essential to understand the impo...
متن کاملFeature subset selection in large dimensionality domains
Article history: Received 30 January 2009 Received in revised form 31 May 2009 Accepted 17 June 2009
متن کاملSingle Feature Ranking and Binary Particle Swarm Optimisation Based Feature Subset Ranking for Feature Selection
This paper proposes two wrapper based feature selection approaches, which are single feature ranking and binary particle swarm optimisation (BPSO) based feature subset ranking. In the first approach, individual features are ranked according to the classification accuracy so that feature selection can be accomplished by using only a few top-ranked features for classification. In the second appro...
متن کاملData dimensionality reduction based on genetic selection of feature subsets
In the present paper, we show that a multi-classification process can be significantly enhanced by selecting an optimal set of the features used as input for the training operation. The selection of such a subset will reduce the dimensionality of the data samples and eliminate the redundancy and ambiguity introduced by some attributes. The used classifier can then operate only on the selected f...
متن کاملAn Adaptive Multiple Feature Subset Method for Feature Ranking and Feature Selection
In this paper, we propose a new feature evaluation method that forms the basis for feature ranking and feature selection. The method starts by generating a number of feature subsets in a random fashion and evaluates features based on the derived subsets. It then proceeds in a number of stages. In each stage, it inputs the features whose ranks in the previous stage were above the median rank and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2007
ISSN: 0162-8828
DOI: 10.1109/tpami.2007.250607